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ABSTRACT: In this paper we study the periodicity of the solutions of
the following fuzzy difference equations
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where k is a positive integer, A4, A4;, i = 0,1 are positive real constants and
the initial values z;, ¢ = —k,—k +1,...,0 (resp. i = —1, 0) of the first (resp.
second) equation are positive fuzzy numbers.
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1 INTRODUCTION

Difference Equations are often used in the study of linear and nonlinear phys-
ical, physiological and economical problems (for partial review see [3], [6]).
This fact leads to the fast promotion of the theory of Difference Equations
which someone can find for instance in [1], [7], [9].

Nowadays, a modern and promising approach for engineering, social and
environmental problems with imprecise, uncertain input-output data arises,
the fuzzy approach. This is an expectable effect, since Fuzzy Logic can han-
dle various types of vagueness but particulary vagueness related to human
linguistic and thinking (for partial review see [8], [10]).

The increasing interest in applications of these two scientific fields con-
tributed the appearance of Fuzzy Difference Equations (see [4], [5], [11], [12],
[13]).

*This work ia a part of her Doctoral Thesis



In this paper we study the fuzzy difference equation

A A A
Brgy = max{—, i } (1.1)
Tn Tn—1 Tn—ik
where k is a positive integer, A is a positive real constant, z;, i = —k, —k +
1,...,0 are positive fuzzy numbers and the fuzzy difference equation
Ay Ay
Tpe] = Maxs —, 1.2
nl { In Zn-1 } ( )

where Ag, A; are positive real constants and z_,, zg are positive fuzzy num-

bers. Firstly, we prove that for every positive fuzzy numbers z_y, z_z41, ..., Zo
(resp. z_1,%0) there exists a unique solution z, of (1.1) (resp. (1.2)) with

initial values x_g,Z_g11,...,zo (resp. z_1,zq). Moreover, we prove that ev-

ery positive solution of (1.1) is eventually periodic of period k + 2. Finally,

we prove that every positive solution of (1.2) is eventually periodic of period

2if Ag > Ay, 3if A; = Ap and 4 if Ap < A4;.

We note that the results obtained in this paper extend the analogous
results obtained by Szalkai in [14] (resp. by Amleh. Hoag and Ladas in
(2]) where the author (resp. authors) studied the corresponding ordinary
difference equation (1.1) (resp. (1.2)) where k is a positive integer, A, 4q, 4;
are positive real constants and z;, ¢ = —k,—k + 1,...,0, (resp. z_1,zq) are
positive real numbers.

2 PRELIMINARIES

We need the following definitions:

For a set B we denote by B the closure of B. We say that a function A
from IRt = (0, c0) into the interval [0,1] is a fuzzy number if A is normal,
convex fuzzy set (see [11]), upper semicontinuous and the support suppA =

U [Ale = {z: A(z) > 0} is compact. Then from Theorems 3.1.5 and
ag(0,1]

3.1.8 of [10] the a-cuts of the fuzzy number A, [4], = {z € R* : A(z) > a}
are closed intervals.

We say that a fuzzy number A is positive if suppA C (0, o0).

It is obvious that if A is a positive real number then A is a positive fuzzy
number and [A], = [4, 4], a € (0,1]. In this case, we say that A is a trivial
fuzzy number.

Let B;, 1 =0,1,...,k, k is a positive integer be fuzzy numbers such that

[Bf]a = [B{,LQ,B-_,:’T,G], i=0,1,...k, ac (0, 1].
Let for any a € (0, 1]

Cio=max{Bjia, 1=0,1,...k}, Cro=max{B;;,, i=0,1,.. k}.

2



Then by Theorem 2.1 of [15] (Ci,,Cy4) determines a fuzzy number C such
that .
[C}G = [Cl,mcr_.a], ac (O l]

According to [8] and Lemma 2.3 of [12] we can define
C=max{B;, 1=0,1,...,k}.

We say that z, is a positive solution of (1.1) (resp. (1.2)) if z,, is a
sequence of positive fuzzy numbers which satisfies (1.1) (resp. (1.2)).

A solution z, of (1.1) (resp.(1.2)) is said to be eventually periodic of
period r, r is a positive integer, if there exists a positive integer m such that

Tptr =Tp, n=m,m+1,..

3 EXISTENCE AND UNIQUENESS OF THE POS-
ITIVE SOLUTIONS OF FUZZY DIFFERENCE
EQUATIONS (1.1) AND (1.2)

In this section we study the existence and the uniqueness of the positive
solutions of the fuzzy difference equations (1.1) and (1.2).

Proposition 3.1 For every positive fuzzy numbers z_j, T_g+1, ..., To (TeSP.
z_1,To) there ezists a unique positive solution z, of (1.1) (resp. (1.2)) with
initial values T_g, T_g4+1,...,To (T€SP. T_1,Zp).

Proof Let z;, i = —k,—k + 1, ...,0 be positive fuzzy numbers such that
[£ida= [Lig: Rig)s 1= —k,—~k + L0, &€ (0, 1]. (3.1)

Let (Lpq, Rne), n=0,1,..., a € (0,1] be the unique positive solution of the
system of difference equations

Ln+1a=nlax{ £ ; 4 ; v e },
’ Rn,a -Rn.—l,a Rn—k,a

A A A (3:2)
R’H—l,a - max{ Ln,a ’ Ln—l,a T Ln-k,a }

with initial values (Lia, Riq), 1 = —k,—k +1,...,0. Since A, L; 4, R g, i =
—k,—k +1,...,0, a € (0,1] are positive numbers, then using Theorem 2.1
of [15] and working as in Proposition 2.1 of [11] and Proposition 1 of [13]



we can easily prove that [Lpe, Rne), n = 1,2,..., a € (0,1] determines a
sequence of fuzzy numbers z, such that

[enle= [Lnus Ruwly mes=ls®, s aE [0, 1], (3.3)

Now, we prove that z, satisfles (1.1) with initial values z;, i = —k, —k +
1,....,0. From (3.1), (3.2), (3.3), Lemma 1 of [13] and by a slight generaliza-
tion of Lemma 2.3 of [12] we have

A A A
[max{ —, ; G }] =
Tn Tn-—1 Tn—k
A A A A A A
max . — , max ; i s =
{ { Rn,a an—l,a an—k,a } {Ln,a Ln-l,a Ln—k._a }]

[Ln+1.a:Rn+1,a] = [-’rn—l-l]a: a € (0, 1]-
(3.4)
From (3.4) and arguing as in Proposition 2.1 of [11] and Proposition 1 of [13]
we have that z, is the unique positive solution of (1.1) with initial values
Ty, A= —k:, —k+ 1.....0.

Arguing as above we can easily prove that if z;. i = —1,0 are positive
fuzzy numbers which satisfy
[zi]a = [Lia, Rial, 1= -1,0, a € (0,1] (3.5)

then there exists a unique positive solution z, of (1.2) with initial values
z;. 1 = —1,0 such that [zn)e = [Lna:Rpe), n = 1.2,..., a € (0,1] and
(Ln.a: Bn.q) satisfles the system of difference equations

Ay A
Rn,a, an—l,a

This completes the proof of the proposition.

}, Rni10= max{ii, f;—;} (3.6)

L o = max{

4 PERIODICITY OF THE SOLUTIONS OF FUZZY

EQUATION (1.1)

In this section we study the periodicity of the positive solutions of (1.1). We
need the following lemmas.

Lemma 4.1 Let A, a,b be positive numbers such that ab # A. If

ab< A (resp. ab > A) (4.1)
then there exist positive numbers ¥,z such that
ygz=A (4.2)
and
a<y, b<Z (resp.a>7q, b>3z). (4.3)



Proof Suppose that (4.1) is satisfied. Then if € is a positive number such
that
A—ab ab— A
3 (resp. €<

)

€<

and

y=a+¢€ Z=—— (resp. y=a—¢, Z 4 )
— €. — S = — €. z =
. ' a+€ 2R ' a—¢€

it is obvious that (4.2) and (4.3) hold. This completes the proof of the
lemma.

Lemma 4.2 We consider the system of difference equations

A A A A A A
Yn+1 = IIla.X{—-', 3 veey }, Zn+l = ma.X{— gy
Zn Zn-1 Zn-k’ Yn Yn-1 Yn—k

} @9

where A 1is a positive real constant, k is a positive integer and y;,z;, 1 =
—k,—k + 1,....0 are positive real numbers. Then every positive solution
(Yn> zn) of (4.4) is eventually periodic of period k + 2.

Proof Let (yn, 2n) be an arbitrary positive solution of (4.4). Firstly, suppose
that there exists a A € {1,2, ...,k + 2} such that

Yazy < A. (4.5)

Then from (4.5) and Lemma 4.1 there exist positive constants 7, = such that
(4.2} holds and

v L ey B (4.6)
From (4.2), (4.4) and (4.6) we have for i = A+ 1,A+2, ... k+ A+ 1
A A A A A
yi:maX{ 3 )y }_>._>__':?~
2i—1 Zi-2 Zi—k—1 ZX z (4.7)
A A A A _ A _ '
zizmax{ ’ sy }2-—>7:z.
Yi-1 Yi-2 Yi—k-1 Yx Y
Then relations (4.2), (4.4) and (4.7) imply that
A A A A _
Yk+x4+2 = max{ - yoeey T } <—-=7
Zh+A+1 Rhk+A ZA+1 z (48)
A A A A _ '
Fh+A+2 = ma.x{ 1 3 7eey } <-=Zz
Yk+2+1 Yk+2 Yr+1 Y

Therefore, from (4.4) and (4.8) we take for j = k+A+3, k+A+4, ..., 2k+A+3

A A A
Yj =max{z_ AT T T } = 3
j—1 Zj-2 Zj—k—1 Zh+A+2 (4.9)
A A A A '
Z5 = max{ 3 yiweey } = ]
Yj—1 Yj—2 Yj—k—1 Yk+A+2
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So, from (4.4). (4.8), (4.9) and working inductively for i = 0,1, ... and j =
3,4, ...,k + 3 we can easily prove that

A
Yk+r+2+i(k+2) = Yk+A+2: Yheatj+i(k+2) = T :
~k+A+2
A
ZheA+2+i(k+2) T FhHAF2s ThtA+jri(k+2) =
et N el Yk+a+2

and so it is obvious that (yy, z,) is eventually periodic of period k + 2.
Therefore, if relation
Yk+22ki2 < A

holds then (yn.zn) is eventually periodic of period k + 2.
Now. suppose that relation

Yr+2zr42 > A (4.10)

is satisfied. Then from (4.10) and Lemma 4.1 there exist positive constants
7, Z such that (4.2) holds and

Yk+2 > T, 2p42 > Z. (4.11)

Moreover. from (4.4) and (4.11) there exist A, u € {1.2, ...,k + 1} such that

A A Ay A
iin

yk+2:ma‘}{{ ’ Rl o >?
Zk+1 2k Z1 A
(4.12)
A A A A
Zhp9 = IAXg————p— say —} =— >z
Ye+1 Yk 1 Yu
Hence, from (4.2) and (4.12) it follows that
BEE Wy (4.13)

We prove that A = u. Suppose on the contrary that A # u. Without loss of
generality we may suppose that 1 <y < A — 1. Then from (4.2), (4.4) and
(4.13) we get

A A A }>£>E

Py == max{ >
Yu

Ya-1 ¥a-2"  Ya—k-1
which contradicts to (4.13). So A = u and then 2, < Z, y) < 7. Then from

(4.2) we have
ma < A

and 8o (yn, zn) is even:ually periodic of period k + 2 if (4.10) holds.
Finally, suppose that 7
Yk+2%k42 = A. (4.14)



From (4.4) it obvious that
A : -
Vi & — Begpo 2 —s =12 .. k41 (4.15)

Therefore. relations (4.4), (4.14) and (4.15) imply that
A A

Ye+3 = max{ykw, T e —} = Yk+2
Zk41 z2
(4.16)
s = max{pa, =, ., 2}
k+3 = RESy Ty sy — PO B,
" ?JL+1 Y2

Hence, using (4.16) and working inductively we can easily prove that

Yk+i = Yk+2, ki = 2Zk42, = 3,4,..

and so it is obvious that (yn,zn) is eventually periodic of period k + 2 if
(4.14) holds. This completes the proof of the lemma.

Proposition 4.1 Consider equation (1.1) where A is a positive real con-
stant and T_g, T_j41, ..., To are positive fuzzy nimbers. Then every positive
solution of equation (1.1) is eventually periodic of period k + 2.

Proof Let 1, be a positive solution of (1.1) with initial values £_g, Z_g+1, ..., Zo
such that (3.1) and (3.3) hold. From Proposition 3.1 (Lnq, Rna)sn=1,2, ...,
a € (0,1] satisfies system (3.2). Using Lemma 4.2 we have that

Lotkt2.0 = Lng, Rntk42a= Rng, n=2k+4,2k+5,....a € (0, 1]. (4.17)

Therefore, from (3.3) and (4.17) we have that z, is eventually periodic of
period k + 2. This completes the proof of the proposition.

5 PERIODICITY OF THE SOLUTIONS OF FUZZY
EQUATION (1.2)

We study the periodicity of the positive solutions of (1.2). We need the
following lemma.

Lemma 5.1 Consider the system of difference equations

Yn+1 = max{AO Al }9 Zn+1 =max{f*2, A1 } (5.1)

Zn  Znp-—1 Yn Yn-1

where Ay, A1 are positive constants and the initial values Y—1, Y0, -1, 20 OTe
positive real numbers. Then the following statements are true:



(i) If

(5.2)

Ap > A
then every positive solution of system (5.1) is eventually periodic of
period two.
(i) If

Ao =4,

(5.3).

then every positive solution of system (5.1) is eventually periodic of

period three.

(iii) If
Ag < A

(5.4)

then every positive solution of system (5.1) is eventually periodic of

period four.

Proof Let (y,,z,) be a positive solution of (5.1).

(i). Firstly. we prove that if there exists an m € {1,2,...} such that

2

Ax < UYmzZm < A_(IJ

(5.5)

then (yn. zn) is eventually periodic of period two. Relations (5.1) imply that

ZnYn—1 2 Ao, Ynzn-12 Ao, n=1,2,...

From (5.5) and (5.6) we get

Using (5.1) and (5.7) it follows that

Ym-1 = IllaX{—,
Zm Zm-1

From (5.1). (5.5) and (5.8) we can easily prove that

Ay
Ym-2 = Inax{ym: T} =UYm;y 2Zm+2 = Im-

<m
Moreover. using (3.1), (5.5), (5.8) and (5.9) we get
Ag A

Ag
Ym+3 = ma.x{—-—- __ym} =T T Ym+l, Zm+3 = Zmtl-

Zm ’ Ao Zm

Ay Al}:Ag, _ o _ A

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

Therefore, using (5.1), (5.9), (5.10) and working inductively we can easily

prove that .
Yn+2 = UYn, Int2 = 2, =M -+ 2:m -+ 31



and so (yn. 2n) is eventually periodic of period two.

Now, we prove that there exists an m € {1,2,...} such that (5.5) holds.
If there exists an m € {1,2} such that (5.5) is satisfied then the proof is
completed. Now, suppose that for any m € {1, 2} relation (5.5) is not true.
We claim that there exists a w € {1, 2,3} such that

= s <A (5.11)

If for w = 1.2 relation (5.11) does not hold, then from (5.2) and since (5.5)
is not true for m = 1,2 we have

2

A
up > 2> A, w=1,2. (5.12)
Ap

Hence, from (5.1), (5.6) and (5.12) we get

A% AgA; AgA;, A2
Y3z3 = max{ 0 3 . 1: 3 1 } < Al
Yazo TY1z2 Y221 Y1z

and so our claim is true.
Now, we prove that if up = yp2, then forn=w,w+ 1, ...
2 2
A5 A9

Uriig = max{a:, e } (5.13)

From (5.1) we get

AZ AgA AgA A?
N TN B 514
Un YnZn—-1 2ZnlYn—-1 Un-1

Then from (5.2), (5.6), (5.11) and (5.14) we can easily prove that (5.13) is
true for n = w. Furthermore, relations (5.1) imply that

= _ A1yn _ Aizp _
Erprils = max{Ao, o }, Unitdy = ma.x{Ag, — } (5.15)
Moreover, from (5.6) and (5.11) we have that
Yw YwZw Ax Zay Aj
= Gy, e — 5.16
Yw-1  ZwYw-1 Ao 2w-1 Ao (5.16)
Therefore, from (5.2), (5.15) and (5.16) it follows that
Zw+1Yw = Yw+12w = Ao. (5.17)
Then using (5.15) and (5.17) we have
“w+2%w+1 = Yw+22w+1- (5.18)



Hence, using (5.15), (5.17), (5.18) and working inductively we take
ZnUn+l = YnZnyl, R=wW,w+1,.... (5.19)

So, from (5.14) and (5.19) we can easily prove that (5.13) is true.
From (5.2) and (5.11) there exists an r € {0,1,...} such that

(j_;)m-+2 < 1_1: < (j_;)??"- (5.20)

Now, we prove that forall s =0,1,...,r+1

uwA(%s A%S .
Uy+3s = A—%s’ Uw+3s5+1 = W (0.21)
In view of (5.2), (5.6) and (5.11) we get
A2 2 2 42
L A guw<ﬁ<—-9. (5.22)
Uy—1 Uw—1 Uy Uy

From (5.13) and (5.22) we take

Uw+1 = II.’lB.}{{'A—{%1 A% } = A—g

Uy Uy-1 Uy

Therefore, relation (5.23) implies that (5.21) is true for s = 0. Suppose
that (5.21) is true for an s = j € {0,1,...,r}. Then from (5.2), (5.13) for
n=w+ 37+ 1, (5.20) and (5.21) for s = j we have

27 25+2 2742
Ay AF _ AP
s -4 = 5
A uwAgJ Uy

Uyw+35+2 = ma.x{ (5.24)

Moreover, using (5.2), (5.13) for n = w+3j + 2, (5.21) for s = j and (5.24)
it follows that

25+2 2j-2 i+2
Ay, A %y, Agj T s
2342 2j-2 - 2542 -
Ay A A

Uw+3j+3 = max{ (5.25)

Finally, from relations (5.2), (5.13) for n = w + 3j + 3, (5.20), (5:24) and
(5.25) we take

25+2 j i+2
AP By AT

2] 2 j TA2) %
Afu, A¥ A vy

Uw+3j+4 = max{ (5 26)

Therefore, (5.21) is true for s = 0,1,...,r + 1. Then from (5.20) and (5.26)
for j = r it follows that

Af
Al < Upt3rta < —
A
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which implies that if m = w + 37 + 4 then (5.5) holds. Therefore, (yn, zn)
is eventually periodic of period two. This completes the proof of Statement
(i).
(ii) From Lemma 4.2 the proof of Statement (ii) follows immediately.
(iil) Firstly, we prove that if there exists an m € {1,2,...} such that

2

A
2 < ymwem < A , (5.27)
A

then (yn. zn) is eventually periodic of period four. From (5.6) and (5.27) we
get

Aq A Ao & _A_l Ay A Ao = A

< —~Ym, — : L —zn, — < —z,. 5.28
Zm—1 — Ao Ym zm ~ Ag ot Ym—1 Ag ™ Ym Ap ™ ( )
So, in view of (5.1) and (5.28) it is obvious that
Ao Al Al Al
S = = < p = T 4m 5 2
Ym+1 max{ P Zm—l} =7 Ym, Zm4+1 = A, (5.29)
From (5.6) and (5.27) we get
| e D g e
Zm+1 Zm  Ym+1 Ym
and so from (5.1) we have
_ Ao Ay _ A _ A4 -
Ym=2 = max{ Il ) Zm} = Zm" Zm42 = m. (030)
Using (5.27) and (5.29) it follows that
iq—oymS@S 4 ) @zmséﬂg A
Ay Zm Zmy+1 A1 Ym Ym+1
and hence. from /5.1) and (5.30) it follows that
Aoym A1 Ay Ay
Ym-3 = max ; = , Baanme=— . w (DL
. { A Zm+1} Zm+1 ol Ym+1 ( )
In view of (5.1). (5.29), (5.30) and (5.31) we get
A ”
Ym+q = maX{%”ﬂl,ym} = Umy Zm+d = Zm. (5.32)
1
In addition, from (5.1), (5.6), (5.31) and (5.32) we have
A o
Ym4s5 = maX{—o,ym+1} = Um+1y, Zm+3 = Zm+1- (0-33)
Zm

11



Therefore, using (5.1), (5.32), (5.33) and working inductively we can easily
prove that
yﬂ+4 = Yn, &n44 = Zn, M =M + 2:m == 33

and 0 (Yn. 2n) is eventually periodic of period four.
Now, we prove that there exists an m € {1,2, ...} such that (5.27) holds.
If there exists an m € {1,2,3} such that (5.27) is satisfied then the proof
is completed. Now, suppose that for any m € {1,2, 3} relation (5.27) is not
true. We claim that there exists a p € {1, 2,3} such that
2
Up = Ypzp < ﬂ. (5.34)
Ay
If for p = 1.2 relation (5.34) does not hold, then since (5.27) is not true for
m = 1,2 we have
up > Ay, p=1,2. (5.35)

Hence. from (5.1), (5.6), (5.35) and since (5.27) is not satisfied for p €
{1,2.3} we get

2 2 2
s =max{ Ag ,A0A1}A0A1? A3 } 2 A3
Yaz2 Y122 Y221 N1 A
and so our claim is true.
In addition, we prove that for n = p,p + 1, ... relation (5.13) is satis-
fied. From (5.6), (5.14) and (5.34) we have that (5.13) is true for n = p.
Furthermore. since from (5.6) and (5.34) the following relations

z A z A
Yo _ _Yp%p 5 __0’ p_ 10
Yp-1  ZpYp-1 A1 o1 A

are satisfied, then using (5.15) we obtain that

Zp+1Yp = Yp+12p = Ap.

Then arguing as in Statement (i) we can easily prove that (5.13) is true for
n=p+lp+2,..
From (5.4) and (5.34) there exists a ¢ € {0,1,...} such that

Ao\20+2 _ upA Ao\ 2 ‘
i @ SR e T 5.
(A1) =742 "(Az) (%:56]
Now, we prove that for all s=0,1,...,g+1
U A%s Ags+2
Upi3s = Z—gs, Up+3s+1 = AT (5.37)

From (5.6) and (5.34) we get I

2 2 2

‘ 5.
up—1 ~ AF T u, (5.38)

12



From (5.13) for n = p and (5.38) we take

2 2
_ AO Al

Up4+1 = Maxy —,
Up Up—1

2
} = fg (5.39)
Up

Therefore, from (5.39) relation (5.37) is true for s = 0. Suppose that (5.37)
is true for an s = j € {0, 1, ..., ¢}. Then from (5.4), (5.13) for n = p+35 +1,
(5.36) and.(5.37) for s = j we have
A 2j A2

12’?331 Agj—z} = gj-2' (5.40)
In addition, using (5.4), (5.13) for n = p+3;+2, (5.37) for s = j and (5.40)
it follows that

Up+3j+2 = max{

2j-2 27+2 27+2
Up+3i+3 = max{ Al b Al 'Up} = Al . (5 41)
P37 - 25-2 2j+2 - 25+2 - ’
AO AG AO

Finally, from relations (5.4), (5.13) for n = p + 35 + 3, (5.36), (5.40) and
(5.41) we get

A2+ 25 2j+4
L 2} = 4o (5.42)

ey
Therefore, (5.37) is true for s = 0,1,...,¢g + 1. Hence, from (5.36) and (5.42)
for j = g it follows that

Up+3j+4 = ma-x{

A

4, < Upt3g+a < Al
which implies that if m = p+ 3¢ + 4 then (5.27) holds. Therefore, (yx, 2,)
is eventually periodic of period four. This completes the proof of Statement

(iif). Thus, the proof of the lemma is completed.

Proposition 5.1 Consider the fuzzy difference equation (1.2) where A;, i =
0.1 are positive real constants and the initial values z;, i = —1,0 are positive
fuzzy numbers. Then if relation (5.2) (resp. (5.8)) (resp. (5.4)) holds, every
positive solution of equation (1.2) is eventually periodic of period two (resp.
three) (resp. four). '

Proof Let z, be a positive solution of (1.2) with initial values z;, i = —1,0
such that relations (3.3), (3.5) hold, then (L, o, Rno). n=1,2,..., a € (0,1]
satisfies system (3.6).

Firstly, suppose that (5.2) is satisfied. We define the set E C (0,1] as
follows:
For any a € E there exists an m, € {1,2} such that

2

A
Al S 'U;ma":l S A_S, Un’a = Ln’aR/n‘a, n= 1,2, ey 4 € E. (5.43)
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Then from Statement (i) of Lemma 5.1 the sequences Ly 4, Rno, a € E
are periodic sequences of period two for n > 2. Moreover, since for any
a € (0,1] — E the relation (5.43) does not hold, then from Statement (i)
of Lemma 5.1 for any a € (0,1] — E there exists a w, € {1,2,3} and an
re € {0,1,...} such that analogous relations (5.11), (5.20) and (5.21) are
satisfied and so form Statement (i) of Lemma 5.1 Ly, 4, Rn 4, a € (0, 1]—-FE are
periodic sequences of period two for n > w, + 37, +4 and so for n > 3r, + 7.
We prove that there exists an r € {0, 1, ...} such that

r+12>r7, a€(0,1]-E. (5.44)

Since z;, i = 1,2,3 are positive fuzzy numbers there exist positive real
numbers K, L such that [L; 4, Rio] C [K,L],i=1,2,3, ¢ € (0,1]— E. Then
from analogous relation (5.20) there exists an r € {0,1,...} such that

(-41)2r+2< K? Ua,a < (Al

A/ TATTA T \4

2ra

) ae(01-E n=123
and so from (5.2) relation (5.44) is satisfied. Therefore, from (5.44) it follows
that Ln o, Rna, a € (0,1] — E are periodic sequences of period two for n >
37 + 10 and so z, is eventually periodic of period two.

If (5.3) holds then from Proposition 4.1 we have that every positive
solution is eventually periodic of period three.

Arguing as above and using Statement (iii) of Lemma 5.1 we can easily
prove that every positive solution of (1.2) is eventually periodic of period
four if relation (5.4) holds. This completes the proof of the proposition.
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